FACULTY OF MECHATRONICS, INFORMATICS AND INTERDISCIPLINARY STUDIES TUL

SKFM 2023 STUDENT CONFERENCE FM

ONLINE PUNCTUATION RESTORATION USING ELECTRA MODEL FOR STREAMING ASR SYSTEMS

Martin Poláček¹ (martin.polacek@tul.cz), Petr Červa¹, Jindřich Žďánský¹, Lenka Weingartová² ¹Technical University of Liberec, Studentská 2, 461 17 Liberec, Czech Republic ²NEWTON Technologies, Na Pankraci 1683/127, 140 00 Praha 4, Czech Republic

Summary

This contribution introduces a lightweight online approach to Automatic Punctuation Restoration (APR), designed for real-time speech transcription systems such as live captioning for TV or radio broadcasts. The approach uses textual input without prosodic features and employs a fine-tuned ELECTRA-Small model with a two-layer classification head. This allows for the restoration of question marks, commas, and periods with minimal inference time and a latency of just three words.

Block-processing vs streaming mode

Block-processing mode:

- punctuation is restored for the entire block of text.

Proposed approach

$$\begin{array}{c|c} T_0 \rightarrow & \rightarrow [F_0, \dots, F_{255}] \rightarrow & \rightarrow [C_0, C_1, C_2, C_3] \\ \hline \\ F_n \rightarrow & & & & \vdots \\ T_n \rightarrow & & & & \rightarrow [F_0, \dots, F_{255}] \rightarrow & & & & & & \\ \end{array}$$

Fig. 1. Proposed APR module

Text preprocessing:

SentencePiece tokenizer with 30522 tokens.

Pre-trained model:

ELECTRA-Small architecture with embedding vector of size 256.

Classification head for APR:

- two feed-forward layers (512 and 4 neurons) with SELU;
- fine-tuned with a small learning rate (LR) for the pretrained model and

Streaming mode:

- each forward pass determines the punctuation for only one word;
- it is not possible to use an input block of constant size;
- the left context is limited by the number of already recognized words (maximum 100 words);
- the right (future) context should be as short as possible.

Context of three words yields F1 values just by 1% smaller than those achieved in the block-processing mode.

max. left cont.	max. right cont.	P [%]	R [%]	F1 [%]
100	1	73.3	67.4	70.2
100	2	75.0	72.5	73.7
100	3	75.3	74.2	74.7
100	4	75.2	75.1	75.1
100	5	75.5	75.5	75.5
100	10	76.0	76.0	76.0
100	100	75.6	73.7	74.6
block-processir	ng with no overlay	75.3	76.8	76.0

- higher LR for classification head;
- produces probability for question mark, comma, period and none.

Training & Development Data

The train dataset includes:

- 23 GB of Czech texts (i.e., 5 billion tokens);
 - newspaper articles, manually corrected ASR transcripts of Czech TV/R broadcasts, diploma theses and legal texts.
- Distribution of punctuation marks among tokens:
 - dots (4.5%), commas (4.5%) and question marks (0.2%).

The development dataset consists of manually corrected TV/R transcripts containing 259K tokens.

Evaluation Metrics

precision (P), recall (R), F1-score (F1);

Evaluation was also performed in the one class scenario:

- all three punctuation marks were merged into one class;
- substitutions of individual punctuation marks were ignored.

Impact of Architecture Type

Different transformer architectures compared:

BERT (pre-trained), ELECTRA-Small and ELECTRA-Base (trained from

Table 2. Results [%] of the proposed APR module in the streaming mode

Results for streamed ASR transcripts

The test data represents a real output from E2E ASR system.

Comparison to RNN-based real-time APR module for Czech:

 It utilizes LSTM units, word embeddings, prosodic features and information about silence extracted from speech signal.

The proposed APR module:

- achieves comparable or better results without using prosodic features;
- just in spontaneous speech, dots and commas are more often confused.

Speech	Proposed APR F1 [%]	Proposed APR F1 (one class) [%]	RNN APR F1 [%]	RNN APR F1 (one class) [%]
Scripted	71.2	84.3	62.1	73.4
Spontaneous	69.4	89.0	71.6	73.3

Table 3. Comparison of the proposed APR module in online mode to the RNN APR module

Conclusions

The proposed lightweight APR module for Czech:

- uses the ELECTRA-Small transformer;
- operates online with a latency of just three-words;

scratch) and GPT-3 based service in an edit mode.

ELECTRA-Small achieves the best results with the lowest inference time.

architecture	F1 [%]	F1 (one class) [%]	inf. time [ms]
BERT-Base	75.2	88.9	61
ELECTRA-Small	76.0	90.7	11
ELECTRA-Base	75.4	90.7	60
GPT-3 (in edit mode)	65.1	73.7	-

Table 1. Comparison of performance of various architectures in the offline block-processing mode

- consumes pure text on its input;
- almost matches block regime accuracy;
- struggles with low-frequency question marks;
- has very low computation demands;
 - forward pass takes 11 ms on Intel i7-9700K processor.

Acknowledgements

- The research leading to these results has received funding from the Norway Grants and the Technology Agency of the Czech Republic within the KAPPA Program (project No. TO0100027).
- This work was supported by the Student Grant Competition (SGS) project of the Technical University of Liberec in 2023.