
 

 

SKFM 2023  
studentská konference FM 

 

 
 
 

Set of Economic Model Predictive 
Controls with different Complexity 

for Smart Hybrid PV-Battery 
Microgrid 

Pavel Vedel <pavel.vedel@tul.cz>, Lukáš Hubka  

The paper describes a set of economic model predictive controls with different complexity for smart hybrid PV-battery 

microgrid. The work of such controllers is shown and it is presented that the most optimal result does not necessarily give the 

most complex or fastest predictive control. 
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Introduction 
Nowadays, different Battery Energy Storage Systems 

(BESS) are of profound interest due to the need to balance 

energy in the grid and maximize the utilization of Renewable 

Energy Sources (RES) [1]. However, Li-Ion batteries are 

consumable materials, and special inverters and converters 

are necessary to connect them to RES, load, and grid. 

Predicative algorithms are usually used for such tasks. 

Algorithm model can be described by different complexity. A 

complex algorithm model should provide more accurate 

results, but at the same time, it takes more time to calculate 

it. This work defines several algorithms and tests it on a 

virtual smart grid. Additionally, the work shows that it is 

necessary to find a compromise between the complexity and 

speed of the algorithms. 

methodology 
In this paper, we consider a system consisting of RES, 

BESS (hybrid high voltage inverter, converters and battery), 

load and connection to the main grid. 

Economic Model Predictive Control (EMPC) can be used 

for a system that includes BESS [2], [3]. The basic idea behind 

this combination is to minimize total electrification expenses 

by transferring energy from one time to another. It can be 

used for load pick shaving in a system with renewable energy 

or a system with a non-flat price program.  

In general, EMPC equations for system with BESS is 

represented by (1-4). 

 min{∑ 𝑀𝑂𝐹𝑖
𝐻
𝑖=1 } (1) 

 𝑀𝐶 (2) 

 𝑆𝑂𝐶𝑖 = 𝑆𝑂𝐶0 +
1

𝑄𝐴
∙ ∑ 𝛥𝑡𝑘 ∙ (𝐼𝑘

𝐶 −
𝐼𝑘
𝐷

𝜂𝐶𝐸
)𝑖

𝑘=1 , ∀𝑖 (3) 

 

0 ≤ 𝑆𝑂𝐶𝑖 ≤ 1, ∀𝑖

𝐼𝑖
𝑏𝑎𝑡 = 𝐼𝑖

𝐷 − 𝐼𝑖
𝐶 , 𝐼𝑖

𝐶 ≥ 0, 𝐼𝑖
𝐷 ≥ 0, ∀𝑖

(𝐼𝑖
𝐶 > 0) ∧ (𝐼𝑖

𝐷 > 0) = 0, ∀𝑖

 (4) 

𝑀𝑂𝐹𝑖  is Main Objective Function (or cost function) for 

every horizon step 𝑖. 𝐻 is horizon length in steps. 𝑀𝐶 is a set 

of Main Constraints. It includes power equality constraints 

with linking renewable energy sources, loads, main grid, 

inverter, converters and buttery. Additionally, there is safety 

limitations of parameters. 𝑄𝐴 is a battery capacity in Ah. 𝛥𝑡𝑖  

is time of related horizon step. 𝐼𝑖
𝐶  and 𝐼𝑖

𝐷 are charging and 

discharging currents, respectively. 𝜂𝐶𝐸  is Coulomb efficiency 

of discharging.  

Since the battery loses its capacity with the style of use, 

additional cost function can be added to (1): 

 min{∑ 𝑀𝑂𝐹𝑖
𝐻
𝑖=1 + 𝐵𝑈𝐶𝑖} (5) 

where 

Table 1: Component complexity table 

TYPE 
 

EQUATIONS ORDER 

Battery voltage 
Constant 𝑉𝑖

𝑏𝑎𝑡 = 𝑉𝑖
𝑏𝑎𝑡,𝑚𝑒𝑎𝑛 0 

Linear 𝑉𝑖
𝑏𝑎𝑡 = 𝑘 ∙ 𝑆𝑂𝐶𝑖 + 𝑏 1 

Converter dead zones 
No 𝑃𝑖

𝑜𝑢𝑡 = 𝑃𝑖
𝑖𝑛 0-1 

Yes 

𝑃𝑖
𝑜𝑢𝑡 =

{
 
 

 
 𝜂 ∙ 𝑃𝑖

𝑖𝑛, 𝑃𝑖
𝑖𝑛 > 𝛼

𝑃𝑖
𝑖𝑛

𝜂
, 𝑃𝑖

𝑖𝑛 < −
𝛼

𝜂
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

0-1 
+ 
bin. 
vars 

Battery aging 
No 𝑑𝑆𝑂𝐻

𝑑𝑡 𝑖
= 0 0 

1-st order 𝑑𝑆𝑂𝐻

𝑑𝑡 𝑖
= 𝑓𝑖(𝐼𝑖

𝐶 , 𝐼𝑖
𝐷, 𝑆𝑂𝐶𝑖 , 𝑆𝑂𝐻) 

1 

2-nd order 𝑑𝑆𝑂𝐻

𝑑𝑡 𝑖
= 𝑓𝑖(𝐼𝑖

𝐶 , 𝐼𝑖
𝐷, 𝑆𝑂𝐶𝑖 , 𝑆𝑂𝐻) 

2 
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 𝐵𝑈𝐶𝑖 =
𝑃𝑟𝑖𝑐𝑒𝐵∙𝛥𝑡𝑖

1−𝐸𝑂𝐿
∙
𝑑𝑆𝑂𝐻

𝑑𝑡 𝑖
 (6) 

𝐵𝑈𝐶𝑖  is Battery Usage Cost for every horizon step 𝑖, 

which depicts the part of full battery price 𝑃𝑟𝑖𝑐𝑒𝐵 that 

should be depreciated. 𝐵𝑈𝐶𝑖  depends on battery aging rate 

(6). In its turn rate depends on main EMPC variables [4].  

It can be possible to highlight 3 components which can 

have different representation. They are listed in Table 1. 

Each of these component type can be described through 

different complexity, which is presented by function order, 

binary component and additional number of variables. Using 

different complexity types, it is possible to specify set of 

EMPC problems. The easiest problem has mixed integer 

linear programming complexity. The heaviest problem has 

mixed integer quadratic constrained quadratic programming 

complexity. It is logical that easy problems, compared with 

heavy problems, can provide more frequent responses with 

less accurate control. 

Results and Discussion 
The virtual smart grid model is the model of the 

considered system. Figure 1 shows the day-ahead electricity 

price, load, SOC, battery current, and final cost for different 

controllers. It is seen that the most complex controller, 

which includes linear battery voltage, converter dead-zones, 

and 2nd-order aging function, cannot reach minimal cost for 

four operation days. It is because solving such a controller 

takes a significant amount of time. 

Conclusion 
The paper describes a set of economic model predictive 

controls with different complexity for smart hybrid PV-

battery microgrid. It has been shown that the most complex 

or fastest controllers do not give the best result on the 

horizon and it is necessary to find a compromise complexity 

when choosing a control. 
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Figure 1: Example of different controller behavior. Horizon length is 24 hours. 

 


