

Numerické modelování hydromechaniky v porézním prostředí

Diplomová práce

Svetlana Šaušová | 29. května 2018

Studentská 2 | 461 17 Liberec 2 | tel.: +420 485 353 290 | Supervisor: Mgr. Jan Stebel, Ph.D.

Obsah

- 2 Biotova poroelasticita
- 3 Numerické řešení
- 4 FEniCS implementace
- 5 Simulace

Motivace

Hydraulické štěpení

Motivace

Hydraulické štěpení
 HDR (Hot Dry Rock)

Obrázek: Hot Dry Rock schéma.

Biotova poroelasticita

Darcyho rovnice

$$\partial_t (Sp + \alpha \nabla \cdot \boldsymbol{u}) - \nabla \cdot (\mathbb{K} \nabla p) = f \quad in \quad (0, T) \times \Omega$$

Rovnice Elasticity

$$-\nabla . (\mathbb{C}\varepsilon(\boldsymbol{u}) - \alpha \boldsymbol{p}\mathbb{I}) = \boldsymbol{g} \quad in \quad (0, T) \times \Omega$$

Numerické modelování hydromechaniky v porézním prostředí 29. května 2018

Redukovaný model

Obrázek: Oblast Ω .

Numerické modelování hydromechaniky v porézním prostředí | 29. května 2018

Redukovaný model

Aproximace

$$abla^n \cdot (\mathbb{K}_{f,n} | p_f|_{\gamma_2} n) \approx \underbrace{\mathbb{K}_f n \cdot n}_k \frac{p_2|_{\gamma_2} - P}{\frac{d}{2}}$$

Numerické modelování hydromechaniky v porézním prostředí | 29. května 2018

Redukovaný model

Aproximace

$$abla^n \cdot (\mathbb{K}_{f,n} \ p_f|_{\gamma_2} \boldsymbol{n}) \approx \underbrace{\mathbb{K}_f \boldsymbol{n} \cdot \boldsymbol{n}}_k \ \frac{p_2|_{\gamma_2} - P}{\frac{d}{2}}$$

Puklinový tlak

$$P:=\frac{1}{d}\int_{-\frac{d}{2}}^{\frac{d}{2}}p_f d\boldsymbol{n}$$

Numerické modelování hydromechaniky v porézním prostředí 29. května 2018

Numerické řešení

Prostorová diskretizace

Metoda konečných prvků (FEM)

Prostorová diskretizace

Obrázek: Konformní síť, (Nalevo): 2-dimenzionální oblast Ω síťovaná pomocí simplexů. (Napravo): 1-dimenzionální redukovaná puklina γ se sítí tvořenou úsečkovými segmentami

Numerické řešení

Prostorová diskretizace

Metoda konečných prvků (FEM)

Časová diskretizace

Implicitní Eulerova metoda

$$\partial_t \Phi(t) pprox rac{\Phi(t) - \Phi(t - \Delta t)}{\Delta t}.$$

Numerické modelování hydromechaniky v porézním prostředí | 29. května 2018

FEniCS implementace

Matematická notace

$$E_{1}(\boldsymbol{u}_{1}, \boldsymbol{p}_{1}, \boldsymbol{r}_{1}, \boldsymbol{U}) = -\int_{\gamma_{1}} \boldsymbol{Q}_{1} \cdot \boldsymbol{r}_{1} + \int_{\Omega_{1}} \left(\mathbb{C}_{1} \varepsilon(\boldsymbol{u}_{1}) \right) \cdot \nabla \boldsymbol{r}_{1} - \alpha \int_{\Omega_{1}} \boldsymbol{p}_{1} \nabla \cdot \boldsymbol{r}_{1}.$$

Numerické modelování hydromechaniky v porézním prostředí 29. května 2018

FEniCS implementace

$$\begin{aligned} E_1(\boldsymbol{u}_1, \boldsymbol{p}_1, \boldsymbol{r}_1, \boldsymbol{U}) &= -\int_{\gamma_1} \boldsymbol{Q}_1 \cdot \boldsymbol{r}_1 + \\ &\int_{\Omega_1} \left(\mathbb{C}_1 \varepsilon(\boldsymbol{u}_1) \right) \cdot \nabla \boldsymbol{r}_1 - \alpha \int_{\Omega_1} \boldsymbol{p}_1 \nabla \cdot \boldsymbol{r}_1. \end{aligned}$$

#Elasticity equation for the domain Omega E_omega = (-inner(Q_1,r('+'))*dS(region_frac)-\ inner(Q_2,r('-'))*dS(region_frac)+\ inner(CE(u),epsilon(r))*dx-alfa*p*div(r)*dx)

Numerické modelování hydromechaniky v porézním prostředí 29. května 2018

Simulace

- Geometrie
- Síť
- Okrajové podmínky
- Počáteční podmínky
- Výsledky

TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií

Geometrie

Obrázek: Geometrie výpočení oblasti.

Numerické modelování hydromechaniky v porézním prostředí 29. května 2018

Simulace 1

Obrázek: (Nalevo): Okrajové podmínky (Dirichlet), (Napravo): Vysíťovaná oblast pro Simulaci 1.

Numerické modelování hydromechaniky v porézním prostředí | 29. května 2018

Simulace 2

Obrázek: (Nalevo): Okrajové podmínky (Dirichlet), (Napravo): Vysíťovaná oblast pro Simulaci 2.

Numerické modelování hydromechaniky v porézním prostředí | 29. května 2018

Obrázek: Vývoj tlakového pole v čase $t = 50\Delta t$.

Obrázek: Vývoj tlakového pole v čase $t = 200\Delta t$.

Obrázek: Vývoj tlakového pole v čase $t = 300\Delta t$.

Obrázek: Vývoj tlakového pole v čase $t = 500\Delta t$.

(a) u (*S*1), $t = 50\Delta t$

(b) u (S2), $t = 50\Delta t$

Obrázek: Vývoj pole posunutí v čase $t = 50\Delta t$.

(a) u (S1), $t = 200\Delta t$

(b) u (S2), $t = 200\Delta t$

Obrázek: Vývoj pole posunutí v čase $t = 200\Delta t$.

(a) u (*S*1), $t = 300\Delta t$

(b) u (S2), $t = 300\Delta t$

Obrázek: Vývoj pole posunutí v čase $t = 300\Delta t$.

(a) u (S1), $t = 500\Delta t$

(b) u (S2), $t = 500\Delta t$

Obrázek: Vývoj pole posunutí v čase $t = 500\Delta t$.

Závěr

- Vzájemný poměr parametrů(d, K, K_f, μ, μ_f, λ, λ_f) má velký vliv na spojitost řešení.
- Model je spolehlivější pro makroskopické pukliny (d ≈ 10⁻²[m]).

Děkuji za pozornost.