Studentská konference Fakulty mechatroniky, informatiky a mezioborových studií 2017 Technická univerzita v Liberci

> TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií

Optický vláknový senzor s nanovlákenným detekčním prvkem

Autor: Bc. Tomáš Vaněk Vedoucí práce: doc. Ing. Stanislav Petrík, CSc.

Fakulta mechatroniky informatiky a mezioborových studií

Abstrct

This thesis presents a senzory system based on the combination of a unique properties of optical fibers and nanofibers, which should to serve for picking up and detecting different agents from a solution. This research was concretly focused on a detection of Esterase enzyme activity, whose higher activity in the blood can signalizated a spreading monocyte leukemia. Optical fiber serves for a transfer of the optical signal to the senzorical field and back to the detector. The main part of the senzory field were SiO₂ nanofibers imobillizated by an Esterase enzyme. The proof of activity was performed by a histochemical reaction and verification by UV/VIS spectroscopy. During this work, the design and the hardware construction of the improved electronic part of the sensor was also carried out.

Úvod a cíle práce

Nanovlákna jsou známa pro svůj obrovský měrný specifický povrch a širokou možnost funkcionalizace povrchu. Tyto vlastnosti mohou býti atraktivní pro různé senzorické aplikace, ačkoliv zatím byly zkoumány převážně ve spojení s elektronickými senzory. Optické vláknové senzory v porovnání s jinými typy senzorů vynikají především vysokou citlivostí. Dále pak možností jejich použití v prostorách s vysokým napětím, teplotou a elektromagnetickým rušením, v explozivních nebo korozivních prostředí atd.

Motivací pro vznik této práce byla myšlenka vytvořit optický vláknový senzor [1, 2], který by dokázal využít přednosti nanovláken pro detekci organických molekul a zejména aktivity enzymů.

Cílem tohoto příspěvku je navrhnout a realizovat experimentální zařízení pro ověření možnosti detekce aktivity organických molekul imobilizovaných na nanovlákenné vrstvě[3]. Vyhodnotit citlivost senzoru, jeho stabilitu a navrhnout možné vylepšení měřicí metody. Zároveň se zaměřit na možnost využití detekce esterázových aktivit pro diagnostiku monocytární leukemie a navrhnout optimalizaci elektronického systému.

$C_{substrat}[ppm] = \frac{m_{substrat}}{\rho_{pufr} * V_{pufr} + m_{barvivo}}$

c je koncentrace, *m je* hmotnost, *V* je objem a p je hustota.

Výsledky

Na obrázku 2a jsou naměřené výsledky odrazivosti měřené senzorem. Je patrné, že se snižující se koncentrací substrátu se odrazivost vzorků blíží referenčnímu vzorku. Z výsledků vyplynulo, že praktický detekční limit senzoru je $c_{substrátu} = 4,69 \text{ mg/l}, \text{ což}$ odpovídá 4,63ppm. Měření absorbance UV/VIS spektrometrem (Obrázek 2b) potvrdilo, že tuto koncentraci je možné detekovat. Stabilita senzoru, respektive měření byla poměrně dobrá, což můžeme vidět z chybových úseček na obrázku 2a.

Obrázek 2. (a) měření intenzity odraženého světla senzorem, (b) měření absorbance UV/VIS spektrometrem.

Na obrázku 3 je snímek sestaveného hardwaru. Hardware obsahuje tři diody o vlnových délkách 410, 525 a 630nm. Intenzita proudu protékajícího diodami je regulovaná proudově stabilizovanými číslicovými potenciometry, které jsou řízeny 32 bitovým mikroprocesorem ARM. Za fotodiodou je přiřazen operační zesilovač s postupným několikanásobným zesílením a filtrací signálu.

Metodika

Zdrojem záření senzoru byla polovodičová dioda $(\lambda = 633 \text{nm})$ a detektorem fotodioda, které byly připojeny na elektronickou část senzoru, obrázek 1b. Pro přivedení záření do senzorového pole a odvedení záření do detektoru sloužilo optické vláknu tvaru Y, Obrázek 1b. Záření v senzorovém poli (Obrázek 1a) dopadalo na esterázou funkcionalizovanou SiO₂ nanovlákenou vrstvu, která část záření absorbovala a část odrazila. Množství absorbovaného záření záviselo na průběhu histochemické reakce, respektive na množství α -naftyl acetátu (substrátu) a Fast Blue RR Salt (barviva) vychytaného esterázou z roztoku.

Obrázek 1. (a) schéma sestavení senzorového pole. (b) snímek optického vlákna typu Y a elektronické části senzoru.

Pro zjištění citlivosti senzoru byla koncentrace substrátu a barviva exponenciálně snižována. Vyhodnocení detekce probíhalo porovnáním intenzity odraženého světla vzorku před reakcí a po reakci. Výsledná detekovaná koncentrace substrátu byla poté

Obrázek 3. Snímek hardwaru

Diskuze a závěr

Provedenými pokusy se podařilo ověřit možnost detekce aktivity enzymu esterázy imobilizovaného na povrchu křemičitých nanovláken. Detekční limit optického vláknového senzoru byl 4,69mg/l. Měření UV/VIS spektrometrem, kromě potvrzení detekčních možností ukazuje potenciální možnost zvýšení citlivosti při použití vlnové délky záření okolo 460nm. Toto záření je zároveň schopno vybudit fluorescenci v nanovláknech, což může být využito pro další výzkum ke zvýšení citlivosti senzoru. Z tohoto důvodu byl sestaven nový hardware, který obsahuje tři diody o vlnových délkách 410, 525 a 630nm. Testy zaměřující se přímo na diagnostiku monocytární leukemie vykazovaly zajímavý potenciál této metody, ale pro prokázání možnosti použití je třeba ještě dalšího výzkumu.

přepočítána na hodnotu ppm podle rovnice (1).

Funkcionalizace SiO₂ nanovlákenné vrstvy a histochemická reakce:

- 1. Křemičitá nanovlákna se na 10 minut vloží do 2ml 2% roztoku glutaraldehydu.
- 2. Promytí ve fosfátovém pufru pH= 7,2.
- 3. Poté se připraví roztok 2mg esterázy v 20ml fosfátového pufru (pH= 7,2) a po dobu 10 minut se v něm nechají inkubovat funkcionalizovaná nanovlákna glutaraldehydem.
- 4. Promytí ve fosfátovém pufru pH=7,2.
- 5. Připraví se roztok 3mg substrátu (α-naftyl acetátu) s 9mg azobarviva (Fast Blue B nebo Fast Blue RR salt) ve fosfátovém pufru (pH=7,2), do kterého vložíme nanovlákna imobilizovaná esterázou. Inkubace probíhá 10 minut za laboratorní teploty.

Reference

TURÁN, Ján a Stanislav PETRÍK. Optické vláknové senzory. Bratislava: Alfa, [1] 978-80-05-00655-5. 1991. ISBN FIDANBOYLU, K. A. a H. S. EFENDIOGLU. Fiber optic sensors and their [2] 5th International Advanced Technologies Symposium applications. In: (IATS'09) [online]. 2009 [vid. 2017-02-25]. Dostupné z: http://www.academia.edu/download/41626548/02_KeynoteAddress.pdf ŠLAMBOROVÁ, Irena, Veronika ZAJÍCOVÁ, Petr EXNAR a Jarmila [3] STUDNIČKOVÁ. Nanofiber structure with immobilized organic substance and the method of its preparation [online]. US20150240411 A1. 12. říjen 2012. [vid. 2017-03-03]. Dostupné z: http://www.google.com/patents/US20150240411

Kontakt: Bc. Tomáš Vaněk tomas.vanek@tul.cz

Tato práce byla podpořena z projektu Studentské grantové soutěže (SGS) na Technické univerzitě v Liberci v roce 2017.